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Introduction

Bias Definition

Bias has been defined as the choice of a specific generalization
hypothesis over others, restricting the search space and model
representation, making learning from data possible [Mitchell, 1997].
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(d) Preference bias of ML algo-
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The effect of bias for Data Science is that several algorithms are
usually tried. This is called trial-and-error approach.
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Trial-and-error approach

Laborious and subjective;
Increase the training time;
Can cause overfitting;

Decrease the experimental reproducible.
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Meta-Learning (MtL) approach

Laborious but objective;

Remove the training time;

Can avoid overfitting;

Towards the experimental reproducible.
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Open gaps

Increase the reproducible in MtL;
Improve data characterization with new meta-features;
Improve the MtL performance;

Management of bias.
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Meta-learning

MtL Definition

Study of methods that explore metaknowledge in order to
improve or to obtain more efficient ML solutions
[Brazdil et al., 2009].

Algorithm Selection Applications:

Optimization [Kanda et al., 2011];

e Time series analysis [Rossi et al., 2014];

o Gene expression tissue classification [de Souza et al., 2010];
@ SVM parameter tuning [Mantovani et al., 2015].
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Algorithm Selection Framework
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Figure: Algorithm selection framework. (Adapted from
[Smith-Miles, 2008])
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Problem Instances (P)

The problem instances P are datasets p that will be used to
generate the meta-base. They can be collected from:

e UCI [Lichman, 2013];

o Keel [AIcaIé-Fdez et al., 2011];

@ OpenML [Vanschoren et al., 2013];

o Artificial datasets [Vanschoren and Blockeel, 2006];

e Datasetoids [Prudéncio et al., 2011].
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Instance Features (F)

The meta-features F' are designed to extract general properties of
datasets f(p). They are able to provide evidence about the future
performance of the investigated techniques [Soares et al., 2001].
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Instance Features (F)

The main groups of meta-features are:

@ General: Extract simple and basic information;
o Statistical: Capture data distribution indicators;

o Information-theoretic: Capture the amount of information
in the data and their complexity;

@ Model-based: Extract characteristics like the shape and size
of a Decision Tree (DT) model induced from a dataset.

o Landmarking: Represents the performance of simple and
efficient learning algorithms.
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Instance Features (F)

The general meta-features are basic information directly
extracted from the dataset:

@ number of attributes, instances and classes;

e frequency of instances in each class.
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Instance Features (F)

The statistical meta-features extract information about the data
distribution:

@ correlation and covariance matrix;

@ skewness and kurtosis.
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Instance Features (F)

The information-theoretic meta-features capture the amount of
information in the datasets:

@ entropy;

@ mutual information;

@ noise signal ratio.
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Instance Features (F)

The model-based meta-features are information extracted from
a DT model:

o tree depth;

@ distribution of the leaves in the tree;

@ number of nodes.
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Instance Features (F)

The landmarking meta-features are the performance of a set of
fast and simple learners:

@ Linear Discriminant;

o Elite-Nearest Neighbor;

@ One node DT-models.
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Algorithms (A)

They represent a set of the algorithms « that will be applied to the
datasets a(p) in the algorithm selection process.

o Classifiers, regressors and clustering algorithms

[Garcia et al., 2018, Pimentel and de Carvalho, 2019]
Pre-processing algorithms [Garcia et al., 2016b]
Hyperparameters [Mantovani et al., 2015]
Optimization [Kanda et al., 2011]
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Evaluation Measures (Y)

The models induced by the algorithm a can be evaluated by
different measures to the datasets y(«a(p)). They are mainly:
@ Accuracy, I3, AUC and kappa for classification;
e MSE, RMSE for regression problems;
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Meta-base (S)

The meta-base S is a collection of meta-examples. A
meta-example is the characterization measures from the datasets
f(p) plus the evaluation of the algorithms y(«(p)) for these
dataset.
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Meta-base (S)

Meta-{classification, regression and ranking}:

Meta-classification Meta-regression Meta-ranking
A 1 1]12[3
meta-features Best meta-features Classifier meta-features  Ranking of
Classifier Performance algorithms

Figure: Example of meta-bases.
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Recommendation System based on MtL

Predicting the classifier performance:

base-level meta-level
- Meta-features
fp) Meta-dataset: »Regression techniques
Datasets P S =1(p) + y(a(p))
Classification
performance
y(a(p)

Classification performance
estimation

Figure: Example of MtL system to predict classifiers performance.
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Complexity Measures

There are many other groups of meta-features:

@ Complexity Measures [Ho and Basu, 2002];

@ kNN and Perceptron -based meta-features
[Filchenkov and Pendryak, 2015];

© Relative meta-features [Soares et al., 2001];
Q Clustering meta-features [de Souza et al., 2010].
o ..
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Complexity Measures

There are many other groups of meta-features:

@ Complexity Measures [Ho and Basu, 2002];

@ kNN and Perceptron -based meta-features
[Filchenkov and Pendryak, 2015];

© Relative meta-features [Soares et al., 2001];
Q Clustering meta-features [de Souza et al., 2010].
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Complexity Measures

There are four main groups of complexity measures:
@ Feature-based measures, which characterize how
informative the available features are to separate the classes;
@ Linearity measures, which try to quantify whether the
classes can be linearly separated,;

© Neighborhood measures, which characterize the presence
and density of same or different classes in local neighborhoods;

@ Network measures, which extract structural information
from the dataset by modeling it as a graph.
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Feature-based Measures
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(a) Artificial dataset. (b) Calculating F2.
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Feature-based Measures

Volume of Overlapping Region (F2):
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Measures of Linearity

Sum of the Error Distance by Linear Programming (L1)
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Figure: Example of L1 computation. The examples misclassified by the
linear SVM are highlighted in gray.
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Measures of Linearity

Sum of the Error Distance by Linear Programming (L1)
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Neighborhood Measures

Fraction of Borderline Points (N1)

A
f2 A
A A,
A
A L, .
° e A% A
A A
° o o A
) A
o o At
f
(a) Artificial dataset. (b) Minimum Spanning Tree

and the detected points in
the decision border.
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Neighborhood Measures

Fraction of Borderline Points (N1)
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Asymptotic complexity:
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Figure: Calculating N1.
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Network Measures

Average density of the network (Density)

f
(a) Artificial dataset. (b) Building the graph (c) Pruning process (su-
(unsupervised) pervised)
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Network Measures

Average density of the network (Density)
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Figure: Calculating Density.
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Complexity Measures

Problems:

e High asymptotic cost!

@ It is faster to run the algorithms than extract the complexity
measures.

Possible solutions:

@ Simulate the Complexity Measures.

@ Work to simplify mathematical formulation.
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Standard Analysis

Evaluating the MtL to predict the classifier performance:
@ Meta-base Analysis: Distribution of the algorithms in the
meta-base and etc...

o Meta-level Analysis: Error of the meta-regressors to predict
the performance of each classifier.

o Base-level Analysis: Performance of the meta-regressors to
predict the best classifier for a dataset.

@ Execution time: Difference of execution time between
trial-and-error and MtL approach.
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Meta-base Analysis
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Figure: Performance of the base-classifiers.
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Meta-level Analysis
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Figure: RMSE of each meta-regressor for each classifier.
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Base-level Analysis
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Figure: Improvement of base-classifier accuracies over baselines.
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Figure: Top-ranked meta-features selected by the RF meta-regressor
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Prospective work

Main interests:

@ Proposing a framework to extract meta-features;
@ Simulating the Complexity Measures;

@ Investigating new measures like Clustering Indexes and types
of model-based

@ Constructing meta-models for AutoML;

@ Solving real problems with MtL.
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Collaborations

i

Joquin (TU/E) Carlos (FEUP) Tin (IBM Watson)
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MtL for Noise Detection
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Figure: Selecting Noise Filters for data cleasing [Garcia et al., 2016a]
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MtL for Data Streams
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Figure: Selecting ML algorithms for Data Streams [Rossi et al., 2014]
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MtL for AutoML
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Figure: Defining AutoML pipelines with MtL.
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Prospective work

Journal papers

@ Lorena, A., Garcia, L., Lehmann, J, Souto, M., & Ho, T. (2019).
“How Complex is your classification problem?”. ACM Computing
Surveys - accepted

@ Alcobaca, E., Siqueira, F., Garcia, L., Rivolli, A., & de Carvalho, A.
(2019). “MFE: Towards reproducible meta-feature extraction”.
Journal of Machine Learning Research. - submitted

@ Rivolli, A., Garcia, L., Soares, C., Vanschoren, J., & de Carvalho,
A., (2019). “Characterizing classification datasets: a study of
meta-features for meta-learning”. Information Science - submitted

@ Garcia, L., Rivolli, A., Alcobaca, E., Lorena, A., & de Carvalho, A.
(2019). “Boosting Meta-Learning with Simulated Data Complexity
Measures.” Intelligent Data Analysis - submitted
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Prospective work

Packages

@ Garcia, L., & Lorena, A. (2018). "EColL: Extended Complexity
Library in R". R package version 0.3.0.
https://CRAN.R-project.org/package=ECoL.

@ Rivolli, A., Garcia, L., & de Carvalho, A. (2017). “mfe:
Meta-Feature Extractor”. R package version 0.1.3.
https://CRAN.R-project.org/package=mfe.

@ Alcobaca, E., Siqueira, F., Garcia, L., & de Carvalho, A. (2019).
“pymfe: Python Meta-Feature Extractor”. Python package version
0.0.3. https://pypi.org/project/pymfe/.
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